
Multi-scale Ball Motion Feature Based Self-correcting Approximation Model for Monocular 3D Volleyball Trajectory Estimation

董家旭 池永研究室 修士課程修了

Background

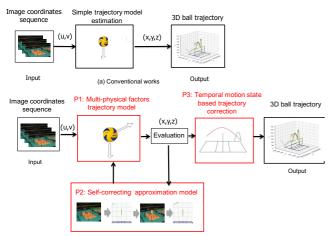
3D volleyball trajectory estimation based on monocular vision

Monocular vision system

Problem

- ① Multi-factors influenced complex trajectory
- 2 Variable trajectory parameters in flight
- 3 Model drifting problem in monocular vision

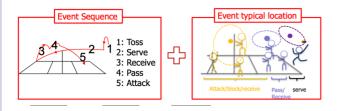
Solution


Proposal 1: Multi-physical factors trajectory model

Proposal 2: Self-correcting approximation model

Proposal 3: Spatial and temporal motion state feature based trajectory correction

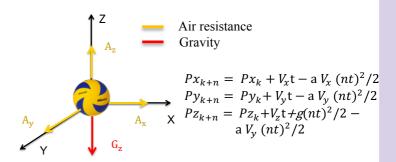
Proposals


Basic framework:

(b) Proposed method

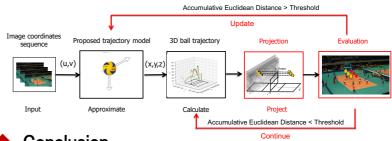
P3. Spatial and temporal motion state feature based trajectory correction

> Use events motion feature correct model drifting



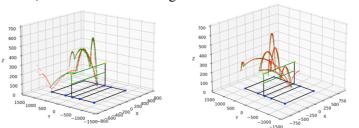
Experiment result

Test Method		Convention al work + P1	Conventio nal work + P1 +P2	Convention al work + P1 +P2+P3
Error range 150mm [%]	38.3	48.1	74.6	82.7
Error range 200mm [%]	45.5	53.7	79.8	89.4
Average error	50.2cm	45.1cm	25.9cm	20.3cm


P1. Multi-physical factors trajectory model

➤ Consider gravity and air resistance in trajectory

P2. Self-correcting approximation model


> Evaluate result and rectify model parameters dynamically

Conclusion

The ground truth is Cheng's work result based on multiview vision system.

Proposed methods achieves 89.4% accurate in error range 150 mm, and 82.7% in error range 200mm

